
 156

8
Concluding Remarks and Future Work

This chapter summarizes the work described thorough this dissertation. It

presents our conclusions, lists the contributions of our work and how they have

been accomplished. Finally it presents directions for future research and briefly

describes the PhD roadmap that culminated in the work detailed here.

8.1.
Conclusions

This work can be divided into three main parts that complement each other:

(i) the exploratory study; (ii) the development of SAFE (Static Analysis for the

Flow of Exceptions), an exception-flow analysis tool for AspectJ programs; and

(iii) the definition of a verification approach, based on SAFE, for the exception

handling code of AspectJ programs.

 We have performed the exploratory study to evaluate the impact of aspects

on the exceptional control flow of programs. In this study, we selected 3 systems

that were implemented both in Java and AspectJ: Health Watcher (Soares, 2004;

Greenwood et al., 2007), Mobile Photo (Figueiredo et al., 2008) and JHotDraw

(Deursen et al., 2005). For the Health Watcher and the Mobile Photo systems

different releases were investigated. Then, we compared the Java and AspectJ

versions of each system release in terms of the number of uncaught exceptions,

exceptions caught by subsumption, and exceptions caught with specialized

handlers. In all the AspectJ versions, we observed a significant increase in the

number of uncaught exceptions and exception subsumptions, and a decrease in the

number of exceptions caught by specialized handlers. To find out what caused

such negative effects in AspectJ releases, we performed a systematic inspection of

the exception handling code of each system.

During the manual code inspections we discovered a set of recurring

program anomalies in the exception handling code of AspectJ programs. We

organized these anomalies into a catalogue of bug patterns related to the exception

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 157

handling code. These bugs came mainly from three sources: aspects acting as

handlers, aspects as exception signalers, and misuses of the declare soft

construct.

Our findings indicate that the exception handling code of AO systems can

indeed be fault prone. We have observed that some characteristics of AO

compositions such as (i) the ability to externally modify the basecode

(Krishnamurthi et al., 2004; Aldrich, 2005), (ii) some developers and approaches

advocating an oblivious development process (Filman and Friedman, 2005), (iii)

the load-time weaving (Colyer, 2004; Bodkin, 2005; Bodkin, 2006) available in

some Aspect Oriented (AO) languages, and (iv) the quantification property

(Filman and Friedman, 2005) strengthen problems that already exists in OO

system development (e.g., uncaught exceptions and unintended handler action).

We have observed that AO compositions have the ability of affecting

negatively the robustness of exception-aware software systems. Therefore, there is

a need for both: improving the design of exception handling mechanisms in AO

programming languages, and building verification tools and techniques tailored to

improve the reliability of the error handling code in aspect-oriented programs.

To support the empirical study described above we developed SAFE (Static

Analysis for the Flow of Exceptions) a static analysis tool that calculates the

exception-flow of AspectJ programs. The exception-flow analysis algorithm

implemented in SAFE traverses a program representation, based on the program

call graph and exceptional control flow information, to discover: (i) every

exception that may escape from an application or an advice method, and (ii) the

exception path of each exception. The Exception Path Miner, one of the SAFE

tool’s components, parses the exception paths and classifies them according to the

Signaler-Handler relationship. This information is useful for guiding manual

inspections of the exception handling code, and discovering the elements

responsible for signaling the exceptions that are not adequately handled inside the

system (e.g., uncaught exceptions).

The lack of verification approaches to the exception handling code of AO

applications motivated the third part of our work: the development of a

verification approach for the exception handling code. The approach proposed

here is supported by the SAFE tool and aims at assisting the developer when

checking the reliability of the exception handling code of AO applications. This

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 158

approach provides brief guidelines for the developer on how such exceptions

should be handled inside an AO application.

8.2.
Contributions

The main contributions of this work are as follows:

• Exploratory Study. This work presents the first systematic analysis which

aims at investigating how aspects affect the exception flows of programs

(Chapter 3).

• Bug Patterns Catalogue for the Exception Handling Code of AspectJ

Programs. One of the main outcomes of our exploratory study was a set of

bug-patterns related to the exception handling code of AO programs which

were characterized based on the data empirically collected (Chapter 4).

• Analysis of AO Compositions’ Characteristics x Exception Handling

Mechanisms. The goal of exception handling mechanisms is to make

programs more reliable and robust. In this study we could observe that some

properties of AOP may conflict with characteristics of exception handling

mechanisms. We discuss, based on data empirically collected during the

study, how the quantification and obliviousness properties pose specific

pitfalls to the design of exception handling code. (Chapter 4, Section 4.2.2)

• Other AO Languages. To answer the question of to which extent our

findings could be applied for other systems implemented in other AOP

languages, we have investigated other AOP technologies (i.e., CaesarJ,

JBoss AOP and Spring AOP) derived from Java language. We have

observed that they followed similar join point model as the one used by

AspectJ, and offered closely related pointcut designators. Such common

characteristics among AO languages, therefore, allow aspects to add or

modify the behavior on similar join points, potentially adding new

exceptions. Consequently, although the exploratory study has focused on

AspectJ systems, our findings (e.g., most of the bugs from the bug pattern

catalogue) can be applied to systems developed in other AO languages.

(Chapter 4, Section 4.2.1)

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 159

• Exception-Flow Analysis tool for AspectJ programs. This work presents an

exception flow analysis tool for AspectJ programs (Chapter 5), which was

initially developed to support the exploratory study presented here. It

interprets the constructs added by AspectJ weaver (neglected by existing

OO static analysis tools) and defines a set of heuristics to deal with AO

concepts during the exception flow analysis (Chapter 5, Section 5.2).

• A Verification Approach for the Exception Handling Code of AspectJ

systems. The lack of verification approaches for the exception handling

code of AO systems, and the inherent difficulties associated with the testing

of exception handling code, motivated the verification approach proposed in

out work. The verification approach proposed here is based on the use of

SAFE tool to statically check the reliability of the exception handling code

of AO applications (Chapter 6).

• Explore the Collateral Effects of Aspect Library Reuse. Aspect libraries

are a relatively new reuse artifact, and only seminal studies had been

performed so far. In this work we discussed the potential faults associated

with library aspects reuse in the presence of exceptions (Chapter 6, Section

6.1.1). Moreover, it provides a way to identify potential problems that may

happen on different aspect reuse scenarios.

The contributions of this work allow for: (i) developers of robust aspect-

oriented applications to make more informed decisions in the presence of evolving

exception flows - added when developing new aspects or integrating new aspect

libraries, (ii) designers of AOP languages and static analysis tools to consider

pushing the boundaries of existing mechanisms to make AOP more robust and

resilient to exceptional conditions. Moreover, the proposed approach is also useful

to help developers when building their own reusable aspect libraries.

8.3.
Future Work

There are several ways our work can be continued, as follows:

• Generalize the Study Results to AO Programs Built from Scratch. It was

our goal in this first empirical study to have an initial understanding of the

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 160

extent AspectJ mechanisms increase/decrease the number of errors in the

exception handling code when compared with the Java counterparts. Since,

many AO systems nowadays are generated from an OO version in which

crosscutting concerns are refactored to aspects, the results of our study can

be directly applied to a large set of current systems. However, the rate of

bugs in AO systems built from scratch might be different. Although, we

believe that the results of this study (e.g. catalogue of bug patterns) are of

relevance for AO software built from scratch, since our catalogue reports

potential misuses of AOP mechanisms in general inherent to aspect intrusive

characteristics, an interesting future work is to run the analysis on some

AspectJ programs built from scratch.

• Reuse Exception-Flow Information. The exception-flow information

calculated for library methods called by an application could be calculated

only once and then reused. This will positively impact the performance of

our inter-procedural analysis.

• Integrate Exception-Flow Information with the IDE. The exception flow

information calculated by SAFE at compile-time could be integrated with a

development environment such as Eclipse as proposed by (Sinha et al.,

2004). Such integration would enable the developer to navigate through the

exception interfaces of methods (and method-like constructs) during

development, eventually helping him/her to remove reported defects. Such

integration could therefore contribute to the reduction of the number of

exception handling defects - one of the main causes of software crashes.

• Perform Extensive Validation for Our Approach. A future work is to apply

the verification approach proposed here to other implementation scenarios

in different AO systems. Such extensive validation could include qualitative

metrics comprising the developers’ opinion while using the approach.

Moreover, we could also investigate the utility of this approach in different

software evolution scenarios (e.g., corrective, adaptive and perfective tasks).

• Adapt the Approach. The verification approach could be refined to tackle

specific problems of aspect library development. For instance, the exception

interface of library aspects could be defined as one of the aspect libraries

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 161

artifacts. As a crosscutting interface (XPI) (Sullivan et al., 2005) documents

the points of a system that can be affected by aspects, the Exceptional

Interface of Aspect Library (EXI) could document which exceptions

(checked or unchecked) can be signaled by each library aspect. The SAFE

tool could calculate the exception interface of aspects and automatically

generate the EXI.

• Extend the SAFE Tool to Support other AO Languages . The current

implementation of SAFE tool can only analyze the exception flow of Java

and AspectJ programs. An interesting future work is to extend the SAFE

tool in order to enable the analysis of other AO Java-based languages such

as: CaesarJ, Spring AOP, JBoss AOP. One way of doing this is to integrate

it with CAPE (Common Aspect Proof Environment) (Faitelson and Katz,

2008) an extensible platform for integrating verification and analysis tools

of aspect-oriented programs. The CAPE proof environment enables a tool

designed to analyze AO programs to execute in a variety of AO languages.

• Improve the SAFE Tool Performance. The current version of SAFE tool

depends on the Soot framework to build the program call graph and

compute the exceptions that may flow from a method-like construct. Soot is

a general propose bytecode analysis framework that can be used for

transformations and optimizations of Java bytecode. It performs a set of

steps that are not of interest to our analysis. Therefore, a straightforward

way to improve the performance of SAFE tool would be to use other call

graph construction algorithms (Grove and Chambers, 2001; (Salcianu, 2001)

or even develop a limited version of Soot to meet SAFE tool’s requirements.

8.4.
PhD Roadmap

This section briefly presents the roadmap followed during this PhD. It

summarizes the issues investigated during this period and the publications directly

related to them. Figure 29 depicts the research issues and related papers ordered in

a timeline.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 162

1

2004 2006 2007

Research

Goals

Publications

2005

time line

2008

C
o
e
lh

o
 a

n
d

A
rn

d
t
(T

u
to

ri
a
l -

S
D

M
S

 2
0
0
4)

C
o
e
lh

o
 e

t.
 a

l.
 (
S

u
g
a
rL

o
af

P
L
o
P

2
00

4)
C

o
e
lh

o
 a

n
d

A
rn

d
t
(T

u
to

ri
a
l -

S
B

E
S

 2
0
0
5)

C
o
e
lh

o
 e

t.
 a

l.
 (
P

o
s
te

r
-
O

O
P

S
L
A

 2
00

5
)

C
o
el

h
o
e
t.
 a

l.
 (
P

o
s
te

r
-
O

O
P

S
L
A

 2
00

5)
C

o
el

h
o
 e

t.
 a

l (
S

P
L
iT

20
06

)

C
o
el

h
o
 e

t.
 a

l.
 (
P

L
o
P

20
06

)

C
o
el

h
o
 a

n
d

A
rn

d
t
(D

o
c.

 S
ym

p
-O

O
P

S
L
A

20
0
6)

C
o
e
lh

o
 e

t.
 a

l.
(S

E
L
M

A
S

 2
0
06

)

C
o
e
lh

o
 e

t.
 a

l.
(I
C

S
M

 2
00

7
)

C
o
e
lh

o
 e

t.
 a

l.
(T

o
o
ls

S
e
ss

io
n

–
S

B
E

S
 2

00
7)

C
o
e
lh

o
 e

t
al

. (
E

C
O

O
P

 2
00

8
)

C
o
e
lh

o
 e

t.
 a

l (
S

B
E

S
 2

00
8)

 (
su

bm
itt

ed
)

C
o
e
lh

o
 e

t.
 a

l.
(P

L
o
P

2
00

8)
 (
su

bm
itt

ed
)

§ § § § § Ф ‡ Ф ‡ Ф Ф ‡’ ‡’ ‡’

Legend:

§ - The Impact of the Testing Processes and Patterns on Software Quality

Ф - Using Aspects to Support the Test of Multi-Agent Systems

‡ - Verification Approach for Aspect-Oriented Programs

‡’ - Verification Approach for the Exception Handling Code of Aspect-Oriented Programs

Figure 29. Research works organized in a timeline.

During my first and second years at PUC-Rio as a PhD candidate my

research mainly focused on investigating of the impact of testing approaches on

software quality. During these years I investigated state of the art testing practices

(see [1] and [3] in Table 16). Based on research ideas and my previous experience

as a Software Engineer in companies and P&D projects, we proposed testing

approaches based on: (i) testing practices of agile methodologies such as Extreme

Programming (see [4]); (ii) and the definition and use of Architectural Test

Patterns (see [2] and [5] in Table 16).

In January 2006 during a three-month research visit at Waterloo University I

started researching about the use of Aspect technology to support the testing

process. During this year we defined a testing approach for asynchronous multi-

agent systems based on the use of Aspect technology to control the test input and

observe the test output of systems composed by multiple autonomous agents (see

[6] and [7] in Table 16). We also developed a supporting tool called JAT for the

definition and execution of the agent tests developed according this approach.

During this research we observed that there was a lack of approaches to test

aspects – there were few guidelines and tools available to help us to test the

crosscutting features of JAT tool (developed in AspectJ language).

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 163

This motivated my research in the field of aspect-oriented software

verification; in this same year we proposed a testing approach for crosscutting

features (see [8] and [9] in Table 16). Since then, I have continued the research on

aspect-oriented software verification and it became the main research theme of my

PhD.

In 2007, during a seven-month research visit at Lancaster University, we

conducted an empirical study that revealed the flaws in the exception handling

code of aspect oriented programs (see [12] in Table 16). This motivated me to

narrow my research to the definition of a verification approach and a supporting

tool to the exception handling code of aspect-oriented system (see [13] and [14] in

Table 16). During this same year we also evolved the testing tool for multi-agent

systems based on the use of aspects (see [10] and [11] in Table 16). Therefore, we

can observe that during this PhD one research question motivated others, which

directly and indirectly contributed to the research work described here.

Selected Publications

[1] COELHO, R.; STAA, A. V. ; Tutorial: Strategies to Achieve Correct

Software. IV Simpósio de Desenvolvimento e Manutenção de Software

da Marinha (SDMS 2004), Rio de Janeiro, 2004.

[2] COELHO, R.; KULESZA, U. ; STAA, A. V. ; LUCENA, C. J. P. .

Layred Information System Test Pattern. Fifth Latin American

Conference on Pattern Languages of Programming (SugarLoafPLoP

2004), 2004.

[3] COELHO, R.; STAA, A. V. ; Tutorial: Software Testing, 19 Brazilian

Symphosium on Software Engineering (SBES 2005), Uberlândia, 2005.

[4] COELHO, R.; BRASILEIRO, E. V. ; STAA, A. V. .Not so eXtreme

programming: agile practices for R&D projects. In: Object- Oriented

Programming, Systems, Languages and Applications (OOPSLA 2005),

2005. (poster)

[5] COELHO, R.; KULESZA, U. ; STAA, A. V. Improving Architecture

Testability with Patterns. In: Object- Oriented Programming, Systems,

Languages and Applications (OOPSLA 2005), 2005. (poster)

[6] COELHO, R., KULESZA, U., STAA, A. V., LUCENA, C. Unit Testing

in Multi-agent Systems using Mock Agents and Aspects. International

Workshop on Software Engineering for Large-scale Multi-Agent

Systems (SELMAS2006), 2006.

[7] COELHO, R., DANTAS, A., KULESZA, U., STAA, A. V., CIRNE, W.,

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

 164

LUCENA, C. The Monitor Aspect Pattern, Pattern Languages of

Programming Design (PLoP 2006) in conjunction with OOPSLA 2006,

2006.

[8] COELHO, R., ALVES, A., KULESZA, U., COSTA, A., STAA, A. V.,

LUCENA, C., BORBA, P. On Testing Crosscutting Features Using

Extension Join Points, 3rd Workshop on Product Line Testing (SPLiT

2006).

[9] COELHO, R., A., STAA. Using Interfaces to Support the Testing of

Crosscutting Features. In: Doctoral Symposium of Object- Oriented

Programming, Systems, Languages and Applications (OOPSLA 2006),

2006.

[10] COELHO, R.; CIRILO, E.; KULESZA, U.; STAA, A., RASHID, A.;

LUCENA, C.; JAT: A Test Automation Framework for Multi-Agent

Systems , International Conference on Software Maintenance (ICSM

2007), 2007.

[11] COELHO, R.; CIRILO, E.; KULESZA, U.; STAA, A. V., RASHID,

A.; LUCENA, C.;JAT Framework: Creating JUnit-Style Tests for

Multi-Agent Systems, Tools Session - Brazilian Symposium on

Software Engineering (SBES 2007), 2007.

[12] COELHO, R.; RASHID, A.; GARCIA, A.; FERRARI, F.; CACHO, N.;

KULESZA, U.;STAA, A. V.; LUCENA, C.; Assessing the Impact of

Aspects on Exception Flows: An Exploratory Study, European

Conference on Object Oriented Programming (ECOOP 2008), 2008.

[13] COELHO, R.; RASHID, A.; KULESZA, U.; STAA, A. V.; LUCENA,

C.; Unveiling and Taming the Liabilities of

Aspect Libraries Reuse, Brazilian Symposium on Software

Engineering, (SBES 2008). (submitted)

[14] COELHO, R.; RASHID, A.; KULESZA, U.; STAA, A. V..; LUCENA,

C.; Exception Handling Bug Patterns in Aspect-Oriented Programs,

Pattern Languages of Programming Design (PLoP 2008) in conjunction

with OOPSLA 2008, 2008. (submitted)

Table 15. List of selected publications.

DBD
PUC-Rio - Certificação Digital Nº 0410879/CA

